Erratum to "Asymptotic Behavior of the Likelihood Function of Covariance Matrices of Spatial Gaussian Processes"
نویسنده
چکیده
The covariance structure of spatial Gaussian predictors aka Kriging predictors is generally modeled by parameterized covariance functions; the associated hyperparameters in turn are estimated via the method of maximum likelihood. In this work, the asymptotic behavior of the maximum likelihood of spatial Gaussian predictor models as a function of its hyperparameters is investigated theoretically. Asymptotic sandwich bounds for the maximum likelihood function in terms of the condition number of the associated covariance matrix are established. As a consequence, the main result is obtained: optimally trained nondegenerate spatial Gaussian processes cannot feature arbitrary ill-conditioned correlation matrices. The implication of this theorem on Kriging hyperparameter optimization is exposed. A nonartificial example is presented, where maximum likelihood-based Kriging model training is necessarily bound to fail.
منابع مشابه
Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes
Covariance parameter estimation of Gaussian processes is analyzed in an asymptotic framework. The spatial sampling is a randomly perturbed regular grid and its deviation from the perfect regular grid is controlled by a single scalar regularity parameter. Consistency and asymptotic normality are proved for the Maximum Likelihood and Cross Validation estimators of the covariance parameters. The a...
متن کاملAsymptotic analysis of covariance parameter estimation for Gaussian processes in the misspecified case
In parametric estimation of covariance function of Gaussian processes, it is often the case that the true covariance function does not belong to the parametric set used for estimation. This situation is called the misspecified case. In this case, it has been shown that, for irregular spatial sampling of observation points, Cross Validation can yield smaller prediction errors than Maximum Likeli...
متن کاملA comparison of algorithms for maximum likelihood estimation of Spatial GLM models
In spatial generalized linear mixed models, spatial correlation is assumed by adding normal latent variables to the model. In these models because of the non-Gaussian spatial response and the presence of latent variables the likelihood function cannot usually be given in a closed form, thus the maximum likelihood approach is very challenging. The main purpose of this paper is to introduce two n...
متن کاملCovariance Tapering for Likelihood Based Estimation in Large Spatial Datasets
Maximum likelihood is an attractive method of estimating covariance parameters in spatial models based on Gaussian processes. However, calculating the likelihood can be computationally infeasible for large datasets, requiring O(n3) calculations for a dataset with n observations. This article proposes the method of covariance tapering to approximate the likelihood in this setting. In this approa...
متن کاملParameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Applied Mathematics
دوره 2010 شماره
صفحات -
تاریخ انتشار 2010